
Authors
Paulo Blikstein (Stanford University, USA), Arnan Sipitakiat (Chiang Mai University, Thailand),

Jayme Goldstein (Google), João Wilbert (Google), Maggie Johnson (Google), Steve Vranakis (Google),
Zebedee Pedersen (Google), Will Carey (IDEO).

Project Bloks:

designing a development platform
for tangible programming for children

Abstract

In the 1960s, Seymour Papert advocated that all children should learn
computer programming. Today, finally, millions of students are learning it,
but there is a lot of work to be done to truly democratize this new literacy.
Project Bloks is a research project with the goal of creating a platform to
enable designers to create new and creative tangible coding languages
and kits for children. Ultimately we want to offer a powerful and open
hardware and software platform that makes it easy to invent novel ways
for children to learn how to code, using new form factors, metaphors, and
knowledge domains.

Coding: more than a job skill, it is a new
literacy for the 21st century

In 1972, two researchers working at MIT, Seymour Papert and Cynthia
Solomon, published “21 Things to Do with a Computer”—a visionary
paper that foresaw the coding-for-children movement, the maker
movement, and most of the creative uses of educational technologies
that we see today. What enabled them to see so far into the future? They
assumed that the most interesting use of technology in education would
not be electronic teachers, or the machine teaching the child. Papert and
Solomon envisioned the child as teacher of the machine. In other words,
they tried to imagine what would happen if children could use computers
to express ideas, construct things, and create inventions, as opposed to
simply using technology to receive pre-packaged information. More
recently, Papert’s collaborators, such as Andy diSessa, contradicted another
well-established conception, stating that computer programming is not
simply a job skill, but a foundational literacy for everyone to learn. In
the same way that we don’t teach music in schools for students to become
professional violinists, or English for students to get jobs in journalism,
we should not teach programming for children to get programming jobs:
we should do so for them to acquire a new way of thinking and seeing
the world. It should be done because we want them to be producers of

01

technology and not mere consumers. Coding is the kind of skill that you
cannot “unlearn”—once you discover it, the way you see the world will
never be the same. And that is why we should care so much about teaching
programming and computational literacy to all: not as a job skill, but as a
thinking skill.

How are we bringing computational thinking to children?

One of the most popular ways to bring coding to children has been
physical computing and robotics, since many children enjoy partaking
in these kinds of activities already. Researchers have been creating these
kinds of platforms for decades with great success, enabling students to
build inventions, robots, and devices, and then program them. One of the
first were the Programmable Bricks, created in the nineties at MIT, which
inspired the popular LEGO® Mindstorms robotics kit. This work also
inspired a series of other platforms over the years, such as the Cricket, Pico
Cricket, GoGo Board, Wiring, Arduino, and Phidgets. More recently, new
form factors, modes of interaction, and materials have been proposed: the
Lilypad kit enables users to create and program e-textiles, Topobo allows
students to program by example instead of typing code, and platforms
such as the MIT Tangible Programming Bricks, Cubelets, MOSS, and
LittleBits enable programming by simply assembling physical blocks
together, without a computer. A variation of this idea was tried at Tufts
University with Tern, a system in which each physical wooden block
corresponded to a programming command. The idea behind Tern was
not to engage children in physically building a robot or device, but to
engage them in writing a program by manipulating tangible blocks. The
individual blocks had optical marks that were read by an overhead camera,
which were compiled by a computer and sent to a physical robot nearby.
These types of systems are typically used with children as young as five years
old, and have many descendants, such as Kibo and more recently, Cubetto.

02

A design space in intense transformation, and many
opportunities for new ideas

In the last five years, this design space has been in intense transformation
because of three factors. First, coding went mainstream, due to high-profile
private and public initiatives and campaigns to popularize it. This
popularity made research labs, design firms, creative educators and
engineers turn their minds to the creation of new platforms for coding.
Second, the popularization of crowdsourcing platforms gave those
groups a viable way to fund and commercialize their ideas. Finally, new
technologies such as low-power wireless communication, low-cost rapid
prototyping, and new types of microcontrollers and microprocessors
expanded the design space in unprecedented ways. It became possible to
offer higher levels of abstraction using more sophisticated hardware and
software and a more creative mix of on and off screen interactions. Those
technologies also made it feasible to “talk” to all kinds of everyday devices
using Internet of Things (IoT) technologies, and new form factors and types of
design emerged, making programming accessible for many new audiences,
younger children in particular.

However, this design explosion had some shortcomings too, such as the
emergence of many single purpose, proprietary and often expensive
designs that could not communicate with one another. Different groups
were working on their own designs and rarely shared the same platform,
design principles, or technologies. Many of these products were meant to
be commercialized for individuals, and because they were not primarily
designed for schools and formal education, using them in classrooms
diminished the focus on collaboration, classroom dynamics, and generating
low-cost designs. Therefore, despite the explosion of creativity and new
products, there are wide open design opportunities and technological needs
within the tangible programming space.

One urgent need is easily available—open source and extensible platforms,
instead of more one-off products, which would provide the research and
design communities with a common “language” for development. The

03

market is saturated with too many incompatible designs. A platform would
also address the problem of increasingly complex hardware and software,
which is a barrier for new designers, especially if they want to focus on
educational design, rather than the technical aspects. Google’s Blockly—a
platform for the creation of on-screen, block-based languages—is a great
example of how such platforms can empower the design community. There
are many opportunities for new conceptual designs as well. With better
platforms, the design community could find even more powerful uses
of tangibility and physicality, so that physical programming languages
are not just transpositions of on-screen languages into the physical world.
There is also work to be done on making tangible programming tools
compatible with the dynamics and social protocols of schools. For example,
offering good supports for collaborative teamwork, and making it easier for
teachers to orchestrate sessions in their classrooms.

Project Bloks

Our contribution to this design space was born from our insights into the
value of a platform-based approach, demonstrated by the success story of
Blockly. The goal is to follow this model, helping the community build
their own languages and products. Project Bloks aims to be to tangible
programming what Blockly is to on-screen block programming.

The Project Bloks system enables educators and makers to create new
tangible programming languages without having to deal with low-level
technical details. We want to create a platform that will allow the
emergence of lots of new designs based on Papert’s and Resnick’s idea of
low-thresholds, high ceilings, and wide walls. We should make it easy for
novices to get started, but possible to build complex and diverse creations
once children’s confidence develops—the tool grows with the child as
opposed to being a disposable one-off design. That’s how Project Bloks
was born—designed in partnership between Google Research, Google
Creative Lab, IDEO, Paulo Blikstein (Stanford), and with contributions
from Arnan Sipitakiat (Chiang Mai University).

04

We want to allow designers, educators, and makers to spend more time
experimenting with form factors, materials, and feedback channels
(haptic, visual, and auditory) rather than getting stuck in the technology.
In other words, we want to enable them to be more creative with language
paradigms and abstractions rather than having to spend most of their time
thinking about the technical side of things. The goal of Project Bloks is to
offer a powerful, open hardware and software platform that makes it easy
to implement sophisticated programming ideas such as functions, recursion,
and complex control structures. It talks to the child’s world by allowing
seamless communication with external devices and sensors, making use
of today’s standard protocols and providing modules that are based on
inexpensive, extensible, and customizable components. It uses open frame
electronics, which allows the creation of different shells and packaging.

One of the key innovations of Project Bloks is that its architecture uses
three types of circuit board module: a Brain Board, Base Boards, and
pucks. The Base Boards contain all the electronics and have connectors
on all sides, so they can be put together in a number of configurations,
allowing for different programming flows (vertical, horizontal, or even
a grid in two dimensions). Each is fitted with a haptic motor and LEDs
that can be used to give users real-time feedback. Pucks go on top of
the Base Boards, and are incredibly cheap and easy to make. They use
an inexpensive, capacitive ID system which does not require active
electronic components. Pucks can be made with any material (children
can make their own too!) and they can contain different mechanical
triggers (“physical” faders, buttons, sliders, dials), enabling different
user experiences and interfaces to be created. The Brain Board is the
processing unit of the system. It receives the commands from the Base
Boards, interprets those commands, and sends them via WiFi or Bluetooth
to a connected device. This architecture enables designers to focus their
energies on making the most of tangibility and physicality.

05

Trying the Project Bloks system with children

To better understand how the features of the system might enable new
ways of interacting with tangibles and coding, we designed a “Coding Kit”.
This kit was our first attempt to create a finished set of blocks for teaching
programming. Over several months, we worked with more than 150 children
to understand, from the ground up, how they played with physical code.

We have run several studies with more planned over the next few months.
Our initial qualitative user studies showed how each of the design features
performed in the real world when our Coding Kit was used by pairs of
children aged 5–8 years old. In general, we were positively surprised
at how quickly children understood the rules of engagement. First, we
noticed that the physical cues (e.g. magnetic snap fits, matching directional
connectors, mapping of form and function of blocks) enabled children to
get comfortable with the tools without asking for too much help. Here
we took a page from software such as Scratch, which allows children
to get started with almost no instruction. Tools that require too much
initial onboarding often have the unintended consequence of disengaging
students if they fail to get the simplest operations done. With this Coding
Kit, within the first minute, children could figure out by themselves how
to connect the blocks and how to orient them. Within the first five minutes,
they also understood the order of execution (left to right), and most of them
got the idea of interchangeable pucks, removing and replacing them easily
on the Base Boards. The magnetic, directional snap-fits successfully guided
users to connect particular blocks to each other, in the right way.

Even with all those successful results, we noticed opportunities for
improvement. For example, some children had trouble understanding
how to use the repeat blocks, using them in the wrong order or placing
repeat commands after, rather than inside the repeat blocks. Since the
idea of Project Bloks is to be a platform and not the perfect programming
language, it immediately got us thinking about how the community might
help us generate a better design.

06

Debugging is a critically important (and sometimes frustrating) aspect of
coding. Helping kids find errors in their programs is one of the hardest
problems interaction designers struggle with. One of the major learnings
from our studies is that more types of immediate feedback can be a key
element in creating a positive experience for children. Our system includes
a number of debugging tools that help children see problems with their
code before they execute it. For example, blocks blink red when there is an
error that will prevent compiling and green when they are being executed.
We observed that the children found the problematic block within seconds,
and also understood, conceptually, the difference between a compilation
and a runtime error. They also immediately developed a productive
routine of observing the code and the robot with “debugging eyes”.

One important question for us was how children would use functions. It is
difficult to implement functions with tangibles, and even harder to make
them easy to use. In our studies, the children demonstrated impressive
levels of understanding concerning what functions can do and how to use
them. With our Coding Kit, children can program a blank puck to receive
a “copy” of a set of blocks, and then draw on top of it, making it not only
mnemonic but also very personal. Children were quick to understand that
their new block “has the same thing from there [their old program],” and
could be reused. For example, when we asked them to create a flower with
multiple petals, most of the children had no difficulty understanding, with
very little prompting, that they did not have enough blocks to build the
flower without encapsulating parts of the code in the blank puck. With this
understanding, they were able to immediately begin manipulating the new
function puck in the same way they did other, pre-built pucks.

Conclusion

These results and observations, albeit from pilot studies, give us some
assurance that the technical affordances of the platform will allow
the community to generate engaging products that will get more kids
falling in love with coding and exploring deep ideas in computational

07

thinking. Some of the technical and design advances of Project Bloks will
hopefully make it easier to introduce children to sophisticated concepts in
programming within a variety of domains and contexts, such as music, arts,
science, and other elements of everyday life.

We hope that this is just the beginning for Project Bloks. In the future, for
example, we could freely provide all the hardware specifications online,
complete with design files so all parts can be made or 3D printed anywhere.
We also want to extend the types of activities that are possible with the
platform, adding pre-installed integrations to toys, existing physical
computing platforms, IoT devices, connected home appliances, and other
devices and services that operate via the web. We also envision allowing
custom pucks to be created/exchanged between people, using a customized,
easy-to-use puck creator environment with which users could create their
own pucks or extend existing kits. Ultimately this could jumpstart ‘Built
with Bloks’ or ‘Taught with Bloks’ communities, showcasing experiments
from makers, teachers, and enthusiasts.

Research and design for children is our passion. Designing the Project
Bloks system was, above all, an exercise to demonstrate how much children
can accomplish with the right tools, how much they can learn when they
are not told what to do, and how much reward exploration can bring them.

The vision of Seymour Papert 50 years ago was a powerful one: children
will program the computer. It won’t be the other way around.

References and inspiration

The platforms, researchers, and designers that inspired our work are here:
http://projectbloks.withgoogle.com/research/#algoblocks

08

http://projectbloks.withgoogle.com/research/#algoblocks

